Clerodane Diterpenoids from Kinostemon alborubrum

by Deng Ye^a), Peng Shu-Lin*^a), Zhang Qiang^b), Liao Xun^a), and Ding Li-Sheng^a)

^a) Chengdu Institute of Biology, The Chinese Academy of Sciences, Chengdu 610041, P.R. China
^b) School of Pharmacy, West China University of Medical Sciences, Chengdu 610041, P.R. China (Fax: +86-28-522-3843; e-mail: peng shulin@163.net)

Three new clerodane diterpenoids, kinalborin A (1), B (2), and C(3), together with six known diterpenoids, teuperin A (4), montanin E (5), teulamifin B (6), teuflin (7), montanin D (8), and teupernin B (9), have been isolated from the whole plant of *Kinostemon alborubrum* (HEMSL.) C. Y. WU et S. CHOW, a Chinese endemic herb. Their structures were established by spectral methods, and those of kinalborins A (1) and C (3) were confirmed by X-ray diffraction.

Introduction. – *Kinostemon alborubrum* (HEMSL.) C. Y. WU et S. CHOW (Labiatae), an endemic herb from the Southwest of China, is used for the treatment of rheumatism in China [1]. To the best of our knowledge, no chemical studies have been previously reported on this plant. During the search for its bioactive components, three new diterpenoids, called kinalborin A (1), B (2), and C (3) and the six known diterpenoids 4-9 (see *Exper. Part*) were obtained from the EtOH extract of the whole plant. We report herein the isolation and structure elucidation of these compounds.

Results and Discussion. – Kinalborin A (1) was isolated as colorless orthorhombic crystals. Its molecular formula was determined as $C_{20}H_{20}O_7$ by HR-EI-MS (m/z 372.1203, calc. 372.1209). The IR absorption indicated the presence of an OH group (3520 cm⁻¹), a furan ring (3140, 1600, 1505, 875 cm⁻¹), and an α,β -unsaturated γ -lactone (1750, 1670 cm⁻¹). The structure of 1, (12S)-15,16-epoxy-8 β -12,19-trihydroxy-6-oxoneoclerodane-3,13(16),14-triene-18,20-dioic acid 18,19 :20,12-dilactone¹) (*Fig. 1*) was established by ¹H- and ¹³C-NMR data (*Tables 1* and 2), by HMQC, HMBC, and ¹H,¹H COSY experiments, by comparison with known compounds and finally by X-ray diffraction (*Fig. 2*).

The presence of a β -substituted furan ring in **1** was supported by the ¹H-NMR (two furan H–C(α) at δ 7.75 and 7.94, and one furan H–C(β) at δ 6.70) and ¹³C-NMR data (δ 108.8, 125.5, 141.0, 144.9). The *ABX* system in the ¹H-NMR at δ 3.11 (*dd*, *J* = 14.8, 9.6 Hz, H–C(11a)), 2.76 (*dd*, *J* = 14.8, 7.2 Hz, H–C(11b)), and 5.75 (*dd*, *J* = 9.6, 7.2 Hz, H–C(12)) and the ¹³C-NMR signals at δ 177.7 (C(20)) and 72.3 (C(12)) were similar to those of *ent*-clerodane diterpenoids carrying a γ -lactone moiety at C(20), C(12). Comparison of the ¹H-NMR and ¹³C-NMR data of **1** with those of teupernin A (**4**) [2] (*Fig.* 3) suggested that **1** has a similar structure, which was confirmed by HMBC experiments showing correlations of H–C(12) with C(11), C(13), C(14), and C(15). The relatively high-field shift of the two olefinic C-atoms at δ 133.1 (C(4)) and 136.6(C(3)) and C(18) at δ 168.0 were similar to those of vittagraciliolide, indicating that the second γ -lactone moiety in **1** was $\alpha\beta$ -unsaturated [3]. In the HMBC spectrum, the olefinic H–C(3) showed correlation with C(5) and C(18). The correlations of H–C(7) (δ (H) 2.78 and 4.10) with C(6), C(8), and C(17) were also observed.

Neoclerodane is (15,2R,3'S,4aR,5S,8aR)-1,2,3,4,4a,5,6,7,8,8a-decahydro-1,2,4a,5-tetramethyl-1-(3-methyl-pentyl)naphthalene, for systematic names, see *Exper. Part.*

Fig. 1. The structures of kinalborins A, B, and C. Trivial numbering.

	1 ^a)	2 ^b)	3 ^b)
CH ₂ (1)	1.60, 2.10	1.44, 2.05	1.66, 2.11
$CH_2(2)$	2.00, 2.30	2.55	1.47
H-C(3)	6.88 (dd, J = 7.2, 6.8)	6.94 (d, J = 6.4)	1.83
H-C(4)	_	-	1.72
H-C(6)	_	4.24 (br. s)	4.61 (br. s)
$CH_2(7)$	2.78, 4.10	2.05, 2.63	2.09, 2.27
H-C(8)	_	_	1.94
H - C(10)	3.36 (d, J = 12)	3.07 (d, J = 12.8)	3.13 (dd, J = 6.8, 2.4)
CH ₂ (11)	2.76 (dd, J = 14.8, 7.2),	2.46, 2.83	2.35, 2.45
	3.11 (dd, J = 14.8, 9.6)		
H - C(12)	5.75 (dd, J = 9.6, 7.2)	5.37 (dd, J = 9.2, 8.0)	5.36 (dd, J = 9.6, 8.0)
H - C(14)	6.70 (dd, J = 2.0, 1.2)	6.42 (br. s)	6.38 (br. s)
H - C(15)	7.94 (t, J = 0.8)	7.46 $(d, J = 1.6)$	7.46 (br. s)
H - C(16)	7.75 $(t, J = 1.6)$	7.50 (br. s)	7.44 (br. s)
Me(17)	1.60	1.25	1.05 (d, J = 6.8)
CH ₂ (19)	4.42, 5.33	4.02, 4.56	3.68, 4.35
^a) In C ₅ D ₅ N. ^b)	In CDCl ₃ .		

Table 1. ¹*H*-*NMR Data for* 1-3. δ in ppm, *J* in Hz. Trivial numbering

Kinalborin B (2) was isolated as colorless crystals. Its HR-EI-MS showed a molecular ion at m/z 374.1375 (calc. 374.1366 for $C_{20}H_{22}O_7$). A comparison of its ¹H-and ¹³C-NMR data with those of **1** suggested that the structure of **2** was similar to **1**, except for the C(6) of **2** being an alcohol instead of a ketone group. HMQC, HMBC, and ¹H-¹H COSY experiments confirmed this conclusion. The β -configuration of OH-C(6) was determined by a NOESY spectrum in which the correlations H-C(6)/H-C(7a), H-C(7b), and H-C(19a) (*Fig.* 4) were found. Therefore, the structure of **2** was established as (12S)-15,16-epoxy-6 β ,8 β ,12,19-tetrahydroxyneoclerodane-3,13(16),14-triene-18,20-dioic acid 18,19:20,12-dilactone¹) (*Fig.* 1).

Kinalborin C (3) was isolated as lamellar crystals. The molecular formula was determined as $C_{20}H_{24}O_6$ by HR-EI-MS (m/z 360.1569, calc. 360.1573). Its IR spectrum showed characteristic absorptions for an OH group (3440 cm⁻¹), a furan ring (3140,

Fig. 3. Structures of the known diterpenoids teupernin A (4), montanin E (5), teulamifin B (6), teuflin (7), montanin D (8), and teupernin B (9)

Fig. 4. Important NOESY correlations of 2

Fig. 5. X-Ray structure of 3

1600, 1510, 870 cm⁻¹), and γ -lactone moiety (1760 cm⁻¹). Its ¹H-NMR and ¹³C-NMR spectra showed the presence of a β -substituted furan ring and a γ -lactone at C(20), C(12), just as in **1**. The structure of **3** was found to be similar to that of teuscorodonin [4], except that C(3) of **3** was saturated. This conclusion was supported by 2D-NMR. Thus, the structure of **3** was elucidated as (12*S*)-15,16-epoxy-6 β ,12,19-trihydroxyneo-clerodane-13(16),14-diene-18,20-dioic acid 18,6:20,12-dilactone¹) (*Fig. 1*), which was confirmed by X-ray-diffraction analysis (*Fig. 5*).

Experimental Part

General. Column chromatography (CC): silica gel (170–200 mesh; Qingdao Haiyang Chemical Group Co.), Lobar LiChroprep RP-8 (40–68 μ m; Merck), Lobar LiChroprep Si-60 (40–68 μ m; Merck), and MCI-Gel CHP-20P (75–150 μ m; Mitsubishi Chemical Corporation). M.p.: XRC-1 apparatus; uncorrected. Optical rotations: PE-241 polarimeter. IR Spectra: Nicolet MX-1 spectrometer. NMR Spectra: Varian-Unity Inova-400 spectrometer; SiMe₄ as internal standard. HR-EI-MS: VG-AutoSpec-3000 spectrometer. ESI-MS: Finnigan LCQ^{DECA} spectrometer.

Plant Material. The whole plants of *K. alborubrum* were collected from Nanchuan, Chongqing, China, in July 1999 and identified by Prof. *Liu Zheng-Yu.* A voucher specimen (1999-50) was deposited in the Herbarium of Chengdu Institute of Biology, The Chinese Academy of Sciences.

	1 ^a)	2 ^b)	3 ^b)	4 ^a)	5 ^a)	6 ^c)	7 ^b)	8 ^b)	9 °)
C(1)	21.2	21.0	19.5	24.3	22.0	20.1	23.3	16.5	24.3
C(2)	27.2	27.7	21.3	24.1	23.1	25.0	22.9	20.9	22.8
C(3)	136.6	139.6	24.0	24.2	31.1	132.5	18.3	29.6	24.6
C(4)	133.1	135.4	46.3	42.1	78.6	137.9	123.4	88.0	43.9
C(5)	59.2	51.1	47.1	56.4	47.2	41.3	165.9	47.1	48.5
C(6)	206.2	69.7	77.6	208.6	67.9	69.8	76.1	69.3	69.5
C(7)	49.7	37.0	29.8	48.7	35.4	36.1	31.4	32.7	36.5
C(8)	76.6	76.7	34.3	76.2	32.7	30.5	35.5	31.7	78.1
C(9)	55.8	56.1	50.5	56.0	52.8	49.8	50.6	51.8	57.1
C(10)	45.4	38.8	46.7	44.7	43.7	36.4	42.7	37.6	38.7
C(11)	38.5	38.5	41.7	38.7	46.2	35.2	42.4	41.3	39.2
C(12)	72.3	72.1	72.1	72.5	72.1	62.2	71.2	71.9	72.8
C(13)	125.5	124.6	124.6	125.9	126.7	130.3	123.9	124.7	125.2
C(14)	108.8	108.2	107.9	108.9	109.0	108.5	107.5	107.7	108.4
C(15)	144.9	144.3	144.3	145.0	144.7	143.1	143.9	143.7	144.5
C(16)	141.0	139.9	139.8	141.1	140.4	138.3	139.5	139.2	140.1
C(17)	25.4	25.0	16.2	26.1	17.0	16.1	17.1	16.2	25.4
C(18)	168.0	169.0	178.4	178.0	68.0	63.6	177.6	66.0	178.7
C(19)	71.4	72.0	58.4	69.4	60.1	74.6	-	71.4	70.7
C(20)	177.7	177.8	178.0	177.6	178.9	173.7	173.3	177.6	180.0
^a) In C ₅ D ₅ N. ^b) In CDCl ₃ . ^c) In CDCl ₃ /CD ₃ OD.									

Table 2. ¹³C-NMR (DEPT) Data for 1-9. δ in ppm. Trivial numbering

Extraction and Isolation. The air-dried and powdered whole plant of K. alborubrum (4.5 kg) was extracted with EtOH at r.t. $(3 \times 10 \text{ days})$. After filtration, the solvent was evaporated to give 455 g of extract. The extract (455 g) was suspended in $H_2O(1000 \text{ ml})$ and extracted with petroleum ether (3 × 500 ml), AcOEt (3 × 500 ml), and BuOH saturated with H₂O (3×500 ml). The AcOEt extract (19 g) was fractionated by CC (MCI-Gel, 3.2 × 25 cm column, MeOH/H₂O 1:1 (400 ml), MeOH/H₂O 7.5:2.5 (400 ml), and MeOH (400 ml): Fr. I (14 g), II (2.7 g), and III (0.15 g). Fr. I (14 g) was submitted to CC (silica gel (140 g), 3.0×40 cm column, CHCl₃/ MeOH gradient $30:1 \rightarrow 2:1$): Fr. I.1 with CHCl₃/MeOH 30:1 (600 ml and 25:1 (600 ml), Fr. I.2 with CHCl₃/ MeOH 20:1 (600 ml), Fr. I.3 with CHCl₃/MeOH 15:1 (600 ml) and 10:1 (600 ml), and Fr. I.4 with CHCl₃/ MeOH 5:1 (600 ml) and 2:1 (600 ml). Fr. I.1 was submitted to CC (Lobar LiChroprep RP-8, MeOH/H₂O 80:20 (400 ml): 1 (26 mg) and 2 (40 mg), after purification by recrystallization from MeOH and CHCl₃, respectively. Compound 3 (60 mg) was obtained from Fr. 1.2 by recrystallization from pyridine. Fr. 1.3 was submitted to CC (Lobar LiChroprep RP-8, MeOH/H₂O 70:30 (600 ml) and 75:25, 600 ml)): 4 (310 mg), 5 (6 mg), and 6 (30 mg). Fr. II (2.7 g) was submitted to CC (silica gel (50 g), 2.0×35 cm column, CHCl₃/MeOH 40:1 (600 ml)): Fr. II.1 and II.2. Fr. II.1 was submitted to CC (silica gel (35 g), 2.0×25 cm column CHCl₃/ MeOH 45:1 (200 ml)) and recrystallized from CHCl₃: 7 (80 mg). Fr. II.2 was recrystallized from MeOH: 8 (25 mg). Compound 9 (15 mg) was obtained from the BuOH extract (4.5 g) by CC (silica gel (50 g), $2.2 \times 25 \text{ cm}$ column, Lobar LiChroprep Si-60 column).

Kinalborin A (=(3\$,5\$,6'a\$,8'\$,10'aR)-5-(Furan-3-yl)-4,5,6',6'a,8',9'-hexahydro-8'-hydroxy-8'-methylspiro-[furan-3(2H),7'(10'H)-[1H]naphtho[1,8a-c]furan]-2,3',10'(5'H)-trione; **1**). Colorless crystals (26 mg). M.p. 208–209° (MeOH). [a]_D²⁰ = + 38 (c = 0.10, MeOH). IR (KBr): 3630, 3520, 3140, 2920, 1745, 1710, 1665, 1600, 1505, 1195, 1165, 1020, 985, 875. ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. HR-EI-MS: 372.1203 ($C_{20}H_{20}O7^+$; calc. 372.1209).

Kinalborin B (=(3\$,5\$,6'a\$,8'\$,10'R,10'aR)-5-(Furan-3-yl)-4,5,6',6'a,9',10'-hexahydro-8',10'-dihydroxy-8'methylspiro[furan-3(2H),7'(8'H)-[1H]naphtho[1,8a-c]furan-2,3'(5'H)-dione; **2**). Colorless crystals (40 mg). M.p. 134–137° (CHCl₃). [a]_D²⁰ = +31 (c = 0.10, MeOH). IR (KBr): 3425, 2925, 1755, 1635, 1505, 1420, 1190, 1115, 1025, 990, 875. ¹H-NMR: Table 1. ¹³C-NMR: Table 2. HR-EI-MS 374.1376 ($C_{20}H_{22}O_7^+$; calc. 374.1366.

Kinalborin C (=2'S,3'R,5S,5'aS,7'R,8'aR,8'bR)-5-(Furan-3-yl)-3',4,4',5,5',5'a,7',8',8'a,8'b-decahydro-8'b-(hydroxymethyl)-7'-methylspiro[furan-3(2H),6'-[6H]naphtho[1,8-bc]furan]-2,2'(2'aH)-dione, **3**). Colorless

crystals (60 mg). M.p. 170–172° (pyridine). $[\alpha]_D^{20} = +82$ (c=0.10, MeOH). IR (KBr): 3560, 3440, 3140, 2935, 1600, 1510, 1385, 1220, 1155, 870. ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. HR-EI-MS: 360.1569 ($C_{20}H_{24}O_6^+$; calc. 360.1573).

X-Ray Crystal Structures. Crystallographic data for **1** and **3** have been deposited with the *Cambridge Crystallographic Data Centre* as supplementary publication nos. CCDC 162029 and 162030. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +44-(0)1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

Teupernin A (4) [2]. Colorless crystals (310 mg). M.p. $261-265^{\circ}$ (CHCl₃). $[a]_D^{20} = +9$ (c = 0.094, CHCl₃). ¹³C-NMR: *Table 2*.

Montanin E (**5**). [5]. Colorless crystals (6 mg). M.p. $215-220^{\circ}$ (MeOH). $[a]_{D}^{20} = +22$ (c = 0.040, CHCl₃). ¹³C-NMR: *Table 2*.

Teulamifin B (6) [6]. Colorless crystals (30 mg). M.p. $201-206^{\circ}$ (CHCl₃). $[a]_{D}^{20} = -47$ (c = 0.062, CHCl₃). ¹³C-NMR: *Table 2*.

Teuflin (7) [4]. Colorless crystals (80 mg). M.p. $211-214^{\circ}$ (CHCl₃). $[\alpha]_{D}^{20} = +18$ (c = 0.136, CHCl₃). ¹³C-NMR: *Table 2*.

Montanin D (8) [3]. Colorless crystals (25 mg). M.p. $211-214^{\circ}$ (MeOH). $[\alpha]_D^{20} = -5$ (c = 0.108, CHCl₃). ¹³C-NMR: *Table 2*.

Teupernin B (9) [2]. Colorless crystals (15 mg). M.p. $234-237^{\circ}$ (MeOH). $[a]_{D}^{20} = 47$ (c = 0.020, CHCl₃). ¹³C-NMR: *Table 2*.

This work was supported by the Special Project of Biological Science and Technology of The Chinese Academy of Sciences (STZ-97-3-08). Thanks are also given to Prof. Kaibei Yu for X-ray diffraction.

REFERENCES

 H. Zhang, Z. Zhang, 'Handbook of Chinese Traditional Medicine Resources', Science Press, Beijing, 1994, p. 1081.

[2] D. Sun, G. Li, Chinese Chem. Lett. 1991, 2, 539.

- [3] Atta-ur-Rahman, Ahmad VU, '¹³C-NMR of Natural Products', Vol. 2, Plenum Press, New York, 1992, p. 194, 188.
- [4] J. L. Marco, B. Rodriguez, C. Pascual, G. Savona, F. Piozzi, Phytochemistry 1983, 22, 727.
- [5] G. Y. Papanov, P. Y. Malakov, *Phytochemistry* 1983, 22, 2787.
- [6] P. Y. Malakov, I. M. Boneva, G. Y. Papanov, S. L. Spassov, Phytochemistry 1988, 27, 1141.

Received April 18, 2002